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Wdr5 is essential for fetal erythropoiesis 
and hematopoiesis
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Abstract 

WDR5 is a highly conserved protein that performs multiple scaffolding functions in the context of chromatin. How-
ever, efforts to understand the function of WDR5 in normal tissues physiologically are quite limited so far. In our 
study, we explored the function of Wdr5 in erythropoiesis and hematopoiesis by using a hematopoietic-specific Wdr5 
knockout mouse model. We found that loss of Wdr5 mediated by Vav-iCre leads to embryonic lethality with defective 
erythropoiesis. In addition, Wdr5-deficiency completely impairs the hematopoietic stem and progenitor cells function 
and might alter the immunophenotype of these stem cells and progenitors by decreasing c-Kit expression. Collec-
tively, we identified the pivotal role of Wdr5 in fetal hematopoiesis and erythropoiesis as the de novo findings.

Keywords  Wdr5, Erythropoiesis, Hematopoiesis, Hematopoietic stem cell

To the editor,
The canonical function of WDR5 is as a core compo-

nent of the MLL histone methyltransferase complexes 
[1]. While the function of several other subunits of MLL 
complexes has been well elucidated in hematopoie-
sis [2–12], little is known about the function of WDR5. 
Our study aimed to identify the role of Wdr5 in normal 
hematopoiesis by utilizing hematopoietic lineage specific 
knockout mouse model.

To investigate the function of Wdr5 in normal 
hematopoiesis, Wdr5 was conditionally deleted in the 

hematopoietic lineage by Vav-iCre transgenic mice 
(Additional file  1: Fig. S1A). Strikingly, we did not 
observe any Wdr5f/f, Vav-iCre mice (referred as CKO 
mice) among 40 offspring from the  intercross between 
the male Wdr5f/f mice and the female Wdr5f/+, Vav-iCre 
mice at weaning age (Fig.  1A), which urged us to fur-
ther dissect the effects at the  fetal stage. Interestingly, 
the CKO embryos showed roughly normal morphology, 
but much paler body color and smaller-sized fetal livers 
(FLs) compared with the  littermate control at E15.5 and 
E16.5 (Fig.  1B and Additional file  1: Fig. S1B). Consist-
ently, the total cell number of FL from CKO was robustly 
decreased at E15.5 (Fig. 1C). We further dissected this at 
E13.5, and similar effect was observed (Additional file 1: 
Fig. S1C). However, the absolute cell numbers of FLs 
were comparable between CKO and the  littermate con-
trol embryos at E12.5 (Additional file 1: Fig. S1D). These 
indicated that the defective erythropoiesis might occur in 
Wdr5-deficient embryos. Next, we evaluated the eryth-
ropoiesis (Additional file 1: Fig. S1E). Compared with the 
littermate control, CKO embryos showed an  increased 
percentage of the immature population including S0-S2 
but a  decreased percentage of relative mature popula-
tion S4, whereas the absolute cell numbers of all stages 
were reduced at E15.5 (Fig. 1D and Additional file 1: Fig. 
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S1F). In addition, Ter119+ cells could be further divided 
into EryA/B/C based on the FSC parameter (Addi-
tional file  1: Fig.  1E). Though the absolute cell numbers 
of EryA/B/C were reduced, the percentage of EryA was 
increased and the percentage of EryB/C was decreased in 
CKO embryos at E15.5 (Fig. 1E and Additional file 1: Fig. 
S1F). Furthermore, we examined whether the terminal 
erythroid differentiation is impaired in Wdr5-deficient 
embryos by Hoechst 33342 staining. Although the per-
centage of the enucleated erythrocytes were comparable 
in CKO and  the littermate control embryos, the total 
number of the  enucleated erythrocytes was decreased 
robustly in CKO embryos (Fig.  1F) and the  enucleated 
cells from CKO embryos showed a larger size compared 
with those from  the littermate control determined by 
the FSC parameter (Additional file  1: Fig. S1G). Collec-
tively, these data suggested  that loss of Wdr5 results in 
the blockade of fetal erythropoiesis.

In addition to the defective erythropoiesis observed in 
the CKO embryos, we wondered whether the impaired 
hematopoiesis also contributed to the embryonic lethal-
ity by loss of Wdr5. We first examined the hematopoi-
etic stem and progenitor cells (HSPCs) in the FLs from 
CKO or the  littermate control embryos at E12.5. The 

percentage and the  absolute cells number of hemat-
opoietic progenitor cells (HPCs) (Lin−Sca1−c-Kit+) or 
LSK (Lin−Sca1+c-Kit+) were roughly normal in CKO 
embryos compared with the  littermate control at E12.5 
(Fig. 2A, B), indicating the initial seeding of HSPCs in the 
FLs was not influenced in the CKO embryos. We further 
examined the HSPCs in the FLs from CKO and the  lit-
termate control embryos at E13.5 and E15.5 (Fig.  2C, 
D). We found that the percentage and the  absolute 
cell number of HPCs and LSK cells from FLs were sig-
nificantly reduced in the  CKO embryos compared with 
the  littermate control at E13.5 (Fig.  2E). Intriguingly, 
the HSPCs underwent rapid expansion in the  littermate 
control FLs but not in the  CKO FLs from E13.5-E15.5 
(Fig. 2E), indicating the crucial role of Wdr5 in regulat-
ing the expansion of HSPCs in FLs. Notably, the expres-
sion of c-Kit on Lin− population was slightly decreased 
in the  E12.5 CKO embryos, then further decreased in 
the  E13.5 CKO embryos, and almost diminished in 
the  E15.5 CKO embryos (Fig.  2A, C and D), suggest-
ing Wdr5 might be required for the expression of c-Kit. 
Surprisingly, the percentage of cKit−Sca1+ population 
was increased in the CKO FLs at E13.5 and E15.5, so we 
further dissected this population. Interestingly, a certain 

Fig. 1  Loss of Wdr5 mediated by Vav-iCre leads to embryonic lethality with defective erythropoiesis. A The offspring from the intercross between 
the male Wdr5f/f mice and the female Wdr5f/+, Vav-iCre at weaning age. B Representative photographs of the embryos (top) and the FLs (bottom) 
from CKO and the littermate control at E15.5. C The absolute cell number of FLs from CKO, heterozygous, and the littermate control embryos at 
E15.5 (n = 2–6 per genotype). D Graph showing the percentage (left) and  the absolute cell number (right) of CD71/Ter119 subsets in the FLs from 
CKO, heterozygous, and the littermate control embryos at E15.5 (n = 2–6 per genotype). E Graph showing the percentage (left) and the absolute 
cell number (right) of EryA/B/C subsets in the FLs from CKO, heterozygous, and the littermate control embryos at E15.5 (n = 2–6 per genotype). 
F Graph showing the percentage (left) and the absolute cell number (right) of the enucleated cells in the FLs from CKO, heterozygous, and 
the littermate control embryos at E15.5 (n = 2–6 per genotype). Statistical significance is indicated by ns for not statistically significant, *p < 0.05, 
**p < 0.01, ***p < 0.001, or ****p < 0.0001. Data are presented as mean ± SD
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percent of CD150+CD48− population was found from 
c-Kit−Sca1+population in CKO but hardly detected in 
the  littermate control FLs at E15.5 (Fig. 2D, G). By con-
trast, the  CD150+CD48− population was only found 

in the  cKit+Sca1+ population from the  control FLs but 
not the  CKO FLs at E13.5 and E15.5, suggesting loss of 
Wdr5 might alter the HSPCs immunophenotype. There-
fore, we performed the colony forming assay to detect the 

Fig. 2  Wdr5 plays a pivotal role in the maintenance of fetal HSPCs function. A Representative FACS profile showing the LSK and HPC populations 
from CKO, heterozygous, and the littermate control embryos at E12.5. B Graph showing the percentage (left) and the absolute cell number 
(right) of the LSK and HPC populations in the FLs from CKO, heterozygous, and the littermate control embryos at E12.5 (n = 3–6 per genotype). 
C and D Representative FACS profiles showing the HSPCs in the FLs from CKO, heterozygous, and the littermate control embryos at E13.5 (C) 
and at E15.5 (D). E Graph showing the absolute cell number of HPC (left) and LSK (right) in the FLs from CKO, heterozygous, and the littermate 
control embryos at various developmental stages (n = 2–7 per genotype for each stage). F Graph showing the percentage (left) and the absolute 
cell number (right) of HSC, cKit−Sca1+, and CD150+CD48−cKit−Sca1+ (CD150+) subsets in the FLs from CKO, heterozygous, and the littermate 
control embryos at E13.5 (n = 2–4 per genotype). G Graph showing the percentage (left) and the absolute cell number (right) of HSC, cKit−Sca1+, 
and CD150+CD48−cKit−Sca1+ (CD150+) subsets in the FLs from CKO, heterozygous, and the littermate control embryos at E15.5 (n = 2–4 per 
genotype). H Graph showing the colony number derived from CKO and the control FLs in CFU assay. Statistical significance is indicated by ns 
for not statistically significant, *p < 0.05, **p < 0.01, ***p < 0.001, or ****p < 0.0001. Data are presented as mean ± SD
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function of HSPCs. Consistently, the CKO FL cells failed 
to give rise to any colonies in the  colony forming assay 
in  vitro (Fig.  2H), indicating loss of Wdr5 impairs the-
function of HSPCs.

In conclusion, we revealed the crucial role of Wdr5 in 
regulating fetal erythropoiesis as well as hematopoie-
sis as the de novo findings, which would broaden the 
understanding  of WDR5 function in this field. WDR5 
is a very promising therapeutic  target in multiple can-
cers including MLL-rearranged leukemia with genetic 
model validation and the  substantial efforts have been 
devoted to developing the  inhibitors for WDR5 [13]. 
Our findings for the physiological function of Wdr5 will 
help to elucidate the safety profile of WDR5 inhibition.
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